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Abstract-The conjugate onset instability of a liquid layer with free upper surface and heated from below 
bv a heating coil through a solid mate is studied. The focus is on the effect of the solid plate thickness and , -1 

its conductivity. It is f&nd that ihe solid plate with a higher thermal conductivity tends to stabilize the 
system. In real experiments, it is much more difficult to achieve a perfectly insulating boundary condition 
than to achieve a perfectly conducting condition for a thermal disturbance. The parallel flow assumption 

is shown to be valid when the plate thickness and its thermal conductivity are small. 

INTRODUCTION 

A LIQUID fluid layer with free upper surface and heated 
from below is subjected to two instability m~hanisms. 
The first one is related to the gravitational force 
caused by vertical density stratification and is referred 
to as Rayleigh-BCnard instability. The second one is 
due to the local variation of interfacial tension and is 
referred to as Marangoni instability. The BCnard- 
Marangoni instability has received much attention 
in both experiments and theoretica studies because 
scientifically and te~hnoiogically significant results are 
expected from low-gravity melt processing and crystal 
growth processing in an orbiting space craft. Metal 
melting experiments in SKYLAB gave evidence of 
surface-tension-driven cellular convection, and it is 
generally well established that the Benard-Marangoni 
effect is responsible for triggering steady and time- 
dependent flows in crystal growth with free surface. 
It is also expected that pure crystals can be provided 
in a reduced gravity environment. The other appli- 
cations of B~nard-Marangoni convection can be 
found in oil extraction from porous media, energy 
storage in molten salts, and chemical engineering of 
paints, colloids and detergents. 

The early study accounting for both buoyancy and 
surface tension effects on a fluid layer was carried out 
by Nield [l]. He found that at the onset of convection 
the driving force for the motion is approximately 
equal to the sum of the surface and buoyancy forces 
in the layer. Davis and Homsy [2] studied the role of 
interfacial deformation in the stability of a horizontal 
layer heated from below and open to the ambient 
air (the Nield model). They found that a deformable 
interface leads to a stabilization relative to the case of 
a planar interface when the Marangoni number is less 
than a critical value. The B~nard-Marangoni insta- 
bility in a system of two fluid layers, where the upper 
air layer is constrained, has also been studied f3-51. 
An excellent review on the subject of thermocapillary 
instability is consolidated by Davis [6]. 

In all the past analyses on the Binard-Marangoni 

instability, the conditions at the bottom surface are 
described either as uniform temperature or as uniform 
heat flux. In the real experiments, such as the one 
shown in Fig. 1 [3,4], the liquid layer is supported by 
a solid plate, which is in turn heated by a heating coil 
with a constant heat flux. One may expect that if the 
plate is very thin, the liquid layer is subjected to a 
uniform heat flux. When the thermal conductivity of 
the plate is very high, a uniform temperature condition 
is realized. For the moderate thickness and moderate 
thermal conductivity of the plate, a Neumann type of 
condition of the form 

VTn = BiT (1) 

may well represent the general situation. Here Bi is 
the Biot number. It is important, however, to note 
that with the consideration of heat conduction in the 
solid plate, the equivalent Biot number for equation 
(1) is a strong function of wavenumber of a disturb- 
ance. As a result, the instability character deviates 
from those analyzed previously. 

Nield [7] was the first to consider the effect of a 
finite conductivity slab on a Rayleigh-Benard system. 
He studied the condition when the solid slab is located 
on the upper surface of the liquid layer while the 
bottom of the surface is at a constant temperature. He 
expanded the normal functions in a set of orthogonal 
functions. Lienhard [S] made the analysis procedure 
systematic. The thickness of the solid plate in his case 
is infinitely large, so that the resulting Biot number, 
expressed in the above form, is only dependent on the 
thermal conductivity ratio of the liquid to the solid 
and the wavenumber. His tabular data indicates that 
the critical Rayleigh number for a two-layer system 
decreases with the increase of fluid layer to outer wall 
conductivity ratio. 

The present study aims at revealing the effect of a 
solid piate on the Benard-Marangoni instability of a 
liquid layer. The purpose of the paper is to shed light 
on the proper selection of a bottom plate for an exper- 
iment and the necessary correction to the experimental 
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NOMENCLATURE 

II wavenumber W cigenfunction of w component 
a,, ca,. wavenumber in x and y directions .s, J. 3 cartesian coordinates. 
A,, A, B,,, B Coeffi~ieIlt constants 
Bi Riot number at upper surface, hh,/k, Greek symbols 
u,, cz integration constants thermal diffusivity 
D differentiation with respect to Z, L7/& ; volumetric expansion coefficient 

Y gravitational acceleration li parameter defined in equation (32) 
h heat transfer coefficient 0 normal mode of temperature 
h,. h, heights of liquid and solid layers, perturbation 

respectively 0 eigenfunction of temperature 
k thermal conductivity 1’ kinematic viscosity 
p/I Marangoni number defined in equation /J density 

(9) (r surface tension. 
?l unit normal vector 
pr, p, real and imaginary growth rates with Subscripts 

time c critical value 
Pr Prandtl number, vjcr 1 liquid property 
qo, q constants defined in equations (29)-(31) r ratio of liquid property to solid 
R Rayleigh number, g~~A~~~~~(~,~,) property 
s surface tension gradient with respect to s solid property. 

temperature 
T temperature Other symbols 
M normal mode component of velocity in : V2 Laplacian operator 

direction ( I* complex conjugate. 

data due to the effect. Since parallel flow assumption 
has been widely used for the heated-from-below prob- 
lem [5, 9-141, it is also the purpose of this paper to 
clarify some features of parallel flow assumptions. In 
the present analysis the temperatures in the liquid 
layer and solid plate are expanded in a normal mode 
form. By requiring the continuity of temperature and 
heat flux across the interfaces of liquid and solid, and 
liquid and gas, and by applying necessary conditions 
on the velocity components, a relation is built to deter- 

mine the coefficient of the amplitude of the normal 
mode. The zero determinant of the system leads to the 
marginal instability. This study shows a qualitatively 
different feature of boundary effect on the Btnard- 
Marangoni instability compared to the results 
previously published. 

THEORETICAL ANALYSIS 

The experiment setup of Fig. I is simplified into a 
model shown in Fig. 2. Here, the horizontal direction 

FIG. 1. Experimental schematics 
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FIN. 2. Mathematical model 

extends to infinity. The solid bottom plate with thick- 
ness h, and thermal conductivity k, is heated by a 

uniform heat flux. The horizontal liquid layer with 
height of h, has a free upper surface which is in contact 

with the ambient air. It is postulated that the free 

surface itself is non-deformable, and surface tension 
is a linear function of temperature. A Cartesian coor- 

dinate system is established with g, the gravitational 
acceleration, in the negative z direction and z is mea- 

sured from the solid-liquid interface. 

Governing equutions 
Following Chandrasekhar’s derivation [15] on the 

Benard problem and assuming that the initial qui- 

escent state has a constant temperature gradient 
AT,/h, in the liquid, the dimensionless perturbation 
equations can be obtained for the liquid as 

l/Pr (7(VZw,)/L7f = R(~2B,/~x2+~2~,/~~‘)+V”~~, (2) 

aqdt = w, +v*o,. (3) 

Here w and 0 are the non-dimensional z component 
of the velocity and the temperature perturbations. Pr 
and R are the Prandtl number and Rayleigh number, 
respectively, as defined in the nomenclature. The sub- 

scripts I and s represent the quantities in the liquid 
and solid, respectively, and t represents time. The 
above equations are obtained on the basis that the 
physical properties are constant. As usual, V* is the 
Laplacian operator 

v2 = 82/6x2 + azjay’ + azia2. (4) 

The non-dimensionalization is made as: velocity by 
a,/h,, time by hf/s,, temperature by AT,, and length by 
h,, where v. is the thermal diffusivity. 

The perturbation equation for the solid is 

w/at = c(,/~,v*~,. (5) 

As for the boundary conditions, the rigid and non- 
slip conditions for the velocity at solid--liquid interface 
at 2 = 0 apply 

w, = 0, aw,jaz = 0 (6) 

and the continuity of temperature and heat flux 
requires 

0, = a,, k, ae,jaz = k, ao,jaz (7) 

with k the thermal conductivity. On the liquid-air 
interface of z = 1, the non-deformation and the bal- 

ance of shear stress by surface tension gradient lead to 

u’, = 0, a*W,/az2 = -M(a*0,/aX2+a*e,/ay*) (8) 

where M is the Marangoni number and is defined as 

S = -&r/at’), where CJ is surface tension, v the kine- 
matic viscosity, and p the density. The heat exchange 
of liquid with the ambient air at z = 1 can be approxi- 

mated by 

ao,jaz = - Bi 0, (10) 

where Bi is Biot number. Bi = hh,/k,, which is a con- 
stant depending on the heat transfer coefficient (h) on 

the upper surface. The extreme case of Bi- ’ = 0 and 
Bi = 0 are the limiting approximations to very con- 

ducting and insulating boundaries. 
On the bottom face of z = -h,/h,, the uniform heat 

flux applies, so that 

ao,/az = 0. (11) 

Normal mode 
Now we can express the above perturbation quan- 

tities in a normal mode form 

wI = W,(z) exp [i@x+a,.y) +ptl (12) 

8, = O,(z) exp [i(a,x+a,y)+ptl (13) 

0, = O,(z) exp [i(a,x+a, y)+pt] (14) 

where a = (a,‘+a,) * ‘I2 is the wavenumber of the dis- 

turbance and p is a complex variable. 

P = pr+ipi (15) 

pr is the growth rate of a disturbance with time. If 
pI > 0, the initial disturbance grows and the initial 

state is unstable to that disturbance. If pI- < 0, the 
disturbance decays and the initial state is stable. When 
pr = 0, the initial disturbance is called marginally 
stable. For a marginally stable disturbance, if p, is 
non-zero, a state of fixed amplitude periodic dis- 

turbances may exist. If for all marginally stable and 
amplified disturbances (p, > 0), pi is always zero (no 
oscillatory motion) the normal mode equations can 
be significantly simplified by setting p = 0. This cir- 
cumstance is commonly referred to as the ‘exchange 
of stability’. Exchange of stabilities has been proven 
valid for the Rayleigh-Benard convection subject to 

a variety of boundary conditions by Pellow and 

Southwell [ 161, for Marangoni convection in one fluid 
layer by Vidal and Acrivos [l7], and for a pair of 
coupled fluid layers by Lienhard [18]. This exchange 
was postulated without proof by Pearson [19], Striven 
and Sternling [20], Nield [l], and Smith [21]. In the 
analyses of two-layer Benard-Marangoni instability 
by Zeren and Reynolds [3] and by Ferm and Wollkind 
[4], the existence of the exchange of stability has also 
been assumed. Indeed, ifp, is set at zero and instability 
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is found, the apparent critical Marangoni number 
must be an upper bound on the true critical Maran- 
goni number [3]. With due appreciation of this impli- 
cation. the exchange of stabilities is assumed here and 
p is set identically zero. 

By substituting equations (12)-(14) into equations 

(2), (3) and (5), we obtain 

(D’-u’)‘R’, = Ra’O, (16) 

(D’-u’)O, = - W, (17) 

and 

(D’-a’)@, = 0 (18) 

with D = Z/r?-. 

The boundary conditions arc 

at 2 ZZ 0, 

W,=O, DW,=O 

0, = O,, k, DO, = k, DO, 

at:= 1. 

W,=O, D*W, ==Mu’O, 

DO, = -BiO, 

and at z = - h,jh, 

DO, = 0. 

(19) 

(20) 

(21) 

(22) 

(23) 

Solution of eigenfunctions 

The eigenfunction of 0, can be easily solved from 
equation (18) as 

0, = C, sinh (az) + CZ cash (a~) 

with C, and C2 as integration constants. Let 

(24) 

k, = k,/k,, h, = h,/h,. (25) 

The substitution of the above solution into boundary 

conditions of (20) and (23) yields a relation for the 
liquid temperature : 

D@,(z = 0) = k,a tanh (ah,)O,(z = 0). (26) 

This is very similar to equation (22), except that Bi is 
now a function of conductivity ratio k,, height ratio 
11, and wavenumber a. By setting h, + ‘x), the above 
equation recovers that derived by Lienhard [8], who 

considered the effect of an infinite thick slab. In 
Nield’s analysis [7], the solid slab is subjected to a 

uniform temperature condition, and therefore, the 
above tanh (ah;) is replaced by c tanh (ah,). 

The combination of equations (16) and (17) results 
in 

(D*-u’)~W, = -Ra’W,. (27) 

The solution of the above equation was first given by 
Pellow and Southwell [16], and can be found in the 
book by Chandrasekhar [ 151: 

W, = A cash (qz) +A* cash (q*z) + A D cos (q,,z) 

+ B sinh (qz) + B* sinh (q*z) + B. sin (qOz) (28) 

where * denotes a complex conjugate, and ,4 and B 
are unknown constants. y0 is a real constant and q is 
a complex constant, and they depend on Rayleigh 
number and wavenumber. 

4” = a(;,-1)“’ (29) 

Re(q) = ~[:(l+y+;‘~)’ “+:(l+r)]“’ (30) 

Im (q) =a[:(l+i’+~‘)’ ‘+:(l+y)]’ ’ (31) 

R a2 = yi&. or ;’ = (R/a*)’ ‘. (32) 

Determination of’eigenralws 

Substitution of equation (28) into the appropriate 
boundary conditions and interface conditions (equa- 

tions (20)-(22), (26)) yields six linear homogeneous 

algebraic equations for the six unknown constants A, 
A*, A,, B, B* and BO. The non-trivial solution of the 

system requires the characteristic determinant of the 
coefficient matrix to vanish. The eigenvalue problem 

is established as 

,f(R, M. k,, h,, Bi, u) = 0 (33) 

where f’ is the determinant of the coefficient matrix. 
With given physical properties of solid and fluid, k,. 

h,, upper surface heat transfer condition Bi, and 

wavenumber a. we can solve the Rayleigh number R 
if A4 is specified, or the Marangoni number A4 if R is 

specified. The corresponding critical value of R, or 

M, is determined by a parabolic fit of R(a) or M(a) 
and by minimizing 

dR/da = 0 or dM/du = 0. (34) 

A computer program was written to calculate the 
determinant of the matrix by L.U decomposition. and 
Muller’s method was used to find the roots of equation 

(33). 

RESULTS AND DISCUSSION 

Validation 

To validate the present solution, we can compare 

the predicted wavenumber and critical Rayleigh num- 
ber with previously published results. For example, 
by setting M = 0, the upper surface is free so that the 

tabular data from Sparrow et ul. [22] can be utilized 
here. In their study, the thermal boundary condition 
on the upper surface is the same as the present one 

(equation (22)). They considered the lower surface 
at the following two limiting conditions: constant 
temperature and uniform heat flux. These two can bc 
recovered by assigning h, and k, to large numbers and 
by assigning h, = 0, respectively. Under both con- 
ditions, we are able to match their wavenumbers 
exactly, and the critical Rayleigh numbers up to 5th 
digit at all the upper surface Biot numbers. Another 
test which can be utilized to make comparison is when 
the fluid is subjected to a uniform heat flux from below 
(h, = 0 or k, = 0) and above (Bi = 0). Now the critical 
wavenumber is zero, and it has been shown [5, 231 
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that the critical Rayleigh number and the critical 
Marangoni number are related by 

R/320fiV/48 = 1. (35) 

The present calculation is able to fit the above relation 
exactly. 

Rayleigh--B&ard convection 
First we consider the case when M = 0, which is 

Rayleigh-Rinard convection with a free upper 
surface. The critical Rayleigh number, as seen from 
equation (33), is a function of k,, h, and the upper 
surface Biot number, Bi. Shown in Fig. 3 is the result 
when the upper surface is kept at a constant tem- 
perature, i.e. Bi- ’ = 0. The critical Rayleigh number 
(R,) here is presented as a function of the ratio of the 
solid plate thickness to the liquid layer thickness (h,) 
at various values of thermal conductivity ratio (k,). 
The two broken lines, taken from ref. [22], cor- 
responds to the critical values when the lower surface 
of the liquid layer is subjected to a fixed tem~rature 
and a fixed heat flux condition. When both k, and h, 
are very small, the constant heat flux supplied by the 
heating coil to the bottom plate is directly transferred 
to the liquid layer, and the critical Rayleigh number 
is close to the asymptotic value of 816.76 given by 
Sparrow et al. [22] for a constant heat flux bottom 
wall. On the other hand, when both k, and h, are high, 
the bottom plate is equivalent to supplying a constant 
temperature to the liquid layer and the critical Ray- 
leigh number approaches the value of 1100.66 as from 
ref. [22]. It is interesting to note that R, increases 
with h, monotonically at the beginning and then 
approaches a value which depends on k,. Indeed, h, 
comes into play as a boundary condition of equation 
(26) through function tanh (ah,). When h, is high, the 
hyperbolic function equals one, so that h, is dropped 
out of expression (26) and R, is independent of h,. 

It is also seen from Fig. 3 that the thermal con- 

Ratio of Sotid Ptate Thickness to Fluid Layer Thickness, ht Ratio of Solid Piate Thickness to Fluid !-aye? Thickness. h r 

FIG. 3. Critical Rayleigh number for a Rayleigh-Binard FIG. 4. Critical Rayleigh number for a Rayleigh-Benard 
convection with a solid bottom plate and Bi-’ = 0 at the convection with a solid bottom plate and Bi = 0 at the upper 

upper surface. surface. 

ductivity ratio (k,) of the bottom plate to the liquid 
layer has a significant impact on R,. For example, 
when k, is very low (as low as lo-‘), the critical 
Rayleigh number is almost independent of h,. The 
same is also true when k, is high (such as k, = 103). 
In the typical Rayleigh-B~nard experiment, the liquid 
layer is very thin so that h, is in the order of 10’ to 
IO’. It is difficult to provide a ‘perfectly insulating’ 
boundary condition for thermal disturbance unless 
the solid plate is indeed an insulator (k, is very low). 
On the other hand, when the plate is made of copper 
and silicon oil is the working liquid, k, is in the order of 
IO’--104. An isotherm condition can be easily fulfilled 
regardless of the thickness of the solid plate. This 
explains why most data of Rayleigh-Benard exper- 
iments are for the isothermal boundary condition. 
The significance of Fig. 3 is that it gives a quantitative 
criterion to achieve a desirable boundary condition 
(uniform temperature or constant heat flux). 

Figure 3 differs from the Nield’s tabular data in 
that the solid slab in the present study is on the bottom 
of the liquid, whereas in his case it is on the top. As a 
result, the critical Rayleigh number in his paper varies 
from 1295.8 to 1707.8, and for the present case it 
varies from 816.76 to 1100.66. 

The influence of the heat transfer character at the 
upper free surface on the system stability can be 
appreciated from Fig. 4, which shows another limiting 
situation of Bi = 0 (Fig. 3 is for Bi- ’ = 0), which 
corresponds to an insulated upper surface. Again, the 
broken lines are the asymptotic values for the limiting 
conditions from ref. [22]. It is seen from the figure that 
under both limiting perfectly conducting and perfectly 
insulating conditions on the liquid and solid interface, 
R, is dramatically decreased compared to Fig. 3. This 
is understandable since when the Biot number of the 
upper surface is zero, any thermal disturbance cannot 
easily dissipate into the ambience and hence resulting 
in a reduced &_ The general trends of R, dependence 
on k,. and h, are the same as that in Fig. 3 

700 - 

Uniform Heat Flux Condition 
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As demonstrated in the last section, for most exper- 
iments the role of the solid plate thickness is likely to 
be minor unless the liquid layer is thick. To this end, 
WC will use h, = 10 in the following calculations. 

The (M, R) locus corresponding to marginal stab- 

ility is plotted in Fig. 5 at several values of thermal 
conductivity ratios (k,). The Biot number of the upper 

surface is 0. so that it is equivalent to insulating the 
surface. In other words, the heat transfer from the 
liquid to the ambient air is very poor. The negative 

Marangoni number in Fig. 5 represents a positive 

coefficient of surface tension with temperature. For a 
regularly pure liquid, the surface tension decreases 

with temperature, resulting in a positive M. When the 

liquid surface is contaminated by chemical impurity, it 
is possible that surface tension will reverse its relation 

with temperature. This gives rise to a negative Maran- 

goni number. The above property of surface tension 

explains well the ‘undercutting’ phenomenon 
observed during welding [24]. First we notice from 

Fig. 5 that when k, is small, the bottom plate behaves 
as an insulator, and the relation of equation (35) is 

well satisfied. With the increase of the thermal con- 

ductivity of the solid plate, the stable region extends. 

At k, = IO’ (or even higher). it becomes what has 

been analyzed by Nield [I]. He gave R, = 669.00 
with CI = 2.087 (when A4 = 0), and our prediction is 

R, = 666.09 with a = 2.077 for k, = 10’. Figure 5 

shows the importance of the selection of the bottom 

plate in possible suppression of Marangoni con- 
vection or Benard convection. 

Under another limit of Bi ’ = 0, our calculations 

indicate that the critical Rayleigh number is inde- 

pendent of the Marangoni number. This is because 
there exists no temperature gradient along the free 

surface. This has also been predicted by Nield [I]. To 
study the upper surface heat transfer effect, the (M, 

YANG 

R) locus is shown in Fig. 6 for Bi = I .O and Bi = 10.0. 
From this figure one concludes that a higher heat 
transfer rate on the upper surface and higher thermal 
conductivity of the solid plate can all stabilize the fluid 
layer. 

Parallel flow means that the wavenumbcr N of a 

system is zero. so that all the quantities are functions 
of 3 with exception of the temperature gradient along 
the horizontal direction, which is a constant to be 

determined from the solution. The parallel flow 

enables a closed-form solution for even very com- 
plicated multi-solid-fluid systems [I41 or two layer 

fluid-fluid Benard-Marangoni system [5]. To make 
the parallel flow assumption realistic it requires uni- 
form heat flux from the top and the bottom. This 

may not be easy to achieve in the real experiment. as 
discussed above, unless k, or h, is zero. In this section, 
we will examine the validity of parallel flow assump- 
tion for the present system, i.e. including the con- 

duction of the solid plate which has a finite value of 
k, and h,. We will also examine the possible way to 
reach the parallel flow condition in experiments. 

As shown in the previous section, equation (35) 
derived for parallel flow can be matched exactly by 
the present study under a condition of zero value of 

k, or h, and zero value of Biot number on the upper 
surface. In the following we will set Bi = 0, and will 

study the effect of k, and h, on the formation of 
parallel flow. To obtain a solution of parallel flow for 

the present system (Fig. 2), let us first review some 
previous results. When the upper surface is a non-slip 
wall, it has been shown [5, 141 that the critical 
Rayleigh number for the liquid and solid system in 
Fig. 2 is 

R, = 720( I+ k,h,) (36) 
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where 720 is the critical Rayleigh number for a single 

fluid layer (no solid plate) [8,22]. The role of the solid 
plate is to increase the thermal resistance, thus leading 
to a more stable system. For the onset motion of the 
present problem shown in Fig. 2, the parallel flow 
solution gives (the derivation is omitted here) 

R/320 + M/48 = 1 + k,h,. (37) 

This relation will be validated by the present study. 
First it is noticed that k,h, is combined as one 
parameter. According to the boundary condition (26), 

if a or h, is small, the expansion of equation (26) on 
the hyperbolic tangent function gives 

tanh (ah,) z ah,, when ah, + 0 (38) 

and the thermal boundary condition becomes 

DO, = a2k,h,0, at z = 0 

therefore, it is a function of k,h,. 

(39) 

Figure 7 gives the critical Rayleigh numbers 
obtained by the parallel flow solution (equation (37)) 
and the present solution. The Marangoni number is 
set to zero, and the independent variable is k,h,. Sev- 

eral values of h, are selected. The R, from parallel flow 
assumption is linearly dependent on k,h,. When the 

height ratio h, is small, such as h, = IO- ‘, equation 
(37) agrees with the present solution up to k,h, = 0.5. 

Even when k, = 1.0, the agreement is still favorable 
up to k,h, = 0.25. On the other hand, when h, = lo’, 
the discrepancy between the two solutions is sig- 
nificant. Apparently, the functional expansion of 

equation (38) is no longer valid and hence the linear 
relation of the critical Rayleigh number with k,h, does 
not hold. This shows that the parallel flow assumption 
is valid only for a small value of h,. The critical wave- 

number corresponding to the curves in Fig. 7 is dis- 

10-l 

4% 

FIG. 7. Comparison of critical Rayleigh numbers from par- 
allel flow solution and the present solution, Bi = 0. 
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FIG. 8. Critical wavenumber from the present solution, 
Bi = 0. 

played in Fig. 8. It is noticed that for h, = lo- ’ and 

h, = lOa, the onset motion is indeed ‘parallel’ up to 
k,h, = 0.4 and 0.18, respectively, and equation (37) is 
perfect for this range of parameters. Even for finite 

values of wavenumbers, the critical Rayleigh number 
calculated from equation (37) is still fairly accurate 
up to a = 0.6 for h, = 10-l and h, = 10’. The sig- 
nificance of the finite value of a = 0.6 can be appreci- 

ated from the fact that in the real system the extension 
of the horizontal dimension is always finite, and the 
parallel flow condition can be achieved in an enclosure 
with an aspect ratio of 0.095 which corresponds to 
a = 0.6. 

CONCLUSIONS 

An analytical solution is performed to study the 

characteristics of the stability of a liquid layer which 

is in contact with a solid plate. The present work 
distinguishes itself from the previous ones which con- 
sidered either uniform temperature or uniform heat 
flux for the BCnard-Marangoni instability. The role 
of the plate thickness is minor in most of the BCnard- 

Marangoni experiments, while the conductivity of the 
plate has a significant impact on the stability of the 
system. In general, regardless of the upper surface 
condition, a higher thermal conductivity of the plate 

leads to a higher critical Rayleigh number. The pre- 
vious parallel flow analysis is found to be valid when 
the plate is thin and has a poor conductivity. 
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EFFET DE CONDITION AUX LIMITES SUR ~INSTABILITE DE BENARD- MARANGONl 

R&mm&--On ttudie I’apparition de l’instabilitt dune couche liquide a surface superieure libre et ChaUffke 
en dessous par un enroulement de chauffage a travers une plaque solide. On focalise sur I’effet de la plaque 
et de sa conductivite. On trouve que cette plaque tend a stabiliser le systtme si sa conductivite thermique 
est tres Clevee. Dans les experiences, il est plus difficile d’obtenir une parfaite condition aux limites d’isolation 
qu’une parfaite condition de conduction, pour une perturbation thermique. L’hypothese d’ecoulement 

paralltle est valide quand I’epaisseur de la plaque et sa conductivitt thermique sont petites. 

RANDEINFLUSS AUF DIE BENARD-MARANGONI INSTABILITAT 

Zusammenfassung-In der vorliegenden Arbeit wird das Einsetzen der Instabilitat in einer Fliis- 
sigkeitsschicht mit freier oberer Qberflache untersucht, wobei eine Wlrmezufuhr von unten mit Hilfe einer 
Heizwendel in einer festen Platte stattfindet. Die Arbeit konzentriert sich auf den EinfluB von Dicke und 
WlrmeleitWhigkeit der Platte. Dabei zeigt sich eine Stabilisierung des Systems bei steigender Wlr- 
meleitBhigkeit. Bei den experimentellen Untersuchungen ist es wesentlich schwieriger eine ideal adiabate 
Randbedin~ng zu verwirklichen als eine Rand~dingung mit idealer W~~eleitung. Die Annahme einer 

Pa~lIels~r~mung erweist sich fiir geringe Plattendick~ und W~~eIeit~higkeit als giiltig. 

BJIMIIHME I-PAHMHbI HA HEYCTO@iMBOCTb PEHAPA-MAPAHTOHM 

hUIOTaUUiI-&CJIenyeTCK 603HWKHOBCHBC HCYCTOtiWiBOCTR XCKllAKOrO CJIOIl CO CBO60QHOk BepXHeii 

nOBepXHOclbEO,XOTOp& Har~BaeT~RCHa3yCnep~b~,npOXO~RIueii~e~3TBep~yIonnaCTHHy.OCHOB- 

Hoe BHHMaHRe yneJI%eTCS 3tptpeXTy TOJlIIIEHbI TBepItOii XlJiWTHHbI Si ee Te~OnpOBOAH~T~. HaiineHo, 
9TO nnacrmra C 6o~b~o~ Te~nO~pOBO~H~b~ OKa3bIBaeT ~Ta6u~u3upy~~~ BO3.I@fCTBlre Ha 

CWTCMY. B HaTsHbIX 3KCIICpHMCHTaX HaMHOI-0 TpyJlHCii WCTWb fpWiEiWiOe yCJ@OBkie C M~e~bHO~ 

ItsonrnkieS& *et4 ycnoewe c wnea.nbm% TenxonpoBo~HocTbm .imn Tennoeoro 803Mymemm. IIorasaHo, 

'1TO Il~~IlOJlO~eHLie 0 llap2WleJlbHOM TeVeHBH CllpaiWlJIEiBO IlpH MaJtbIX TOJIIIWie H TeIIJlOIXpOBOA- 

HOCTWI,JIaCTHHbI. 


